The Octopus Vertical Lobe Modulates Short-Term Learning Rate and Uses LTP to Acquire Long-Term Memory

نویسندگان

  • Tal Shomrat
  • Ilaria Zarrella
  • Graziano Fiorito
  • Binyamin Hochner
چکیده

Analyzing the processes and neuronal circuitry involved in complex behaviors in phylogenetically remote species can help us understand the evolution and function of these systems. Cephalopods, with their vertebrate-like behaviors but much simpler brains, are ideal for such an analysis. The vertical lobe (VL) of Octopus vulgaris is a pivotal brain station in its learning and memory system. To examine the organization of the learning and memory circuitry and to test whether the LTP that we discovered in the VL is involved in behavioral learning, we tetanized the VL to induce a global synaptic enhancement of the VL pathway. The effects of tetanization on learning and memory of a passive avoidance task were compared to those of transecting the same pathway. Tetanization accelerated and transection slowed short-term learning to avoid attacking a negatively reinforced object. However, both treatments impaired long-term recall the next day. Our results suggest that the learning and memory system in the octopus, as in mammals [9], is separated into short- and long-term memory sites. In the octopus, the two memory sites are not independent; the VL, which mediates long-term memory acquisition through LTP, also modulates the circuitry controlling behavior and short-term learning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A learning and memory area in the octopus brain manifests a vertebrate-like long-term potentiation.

Cellular mechanisms underlying learning and memory were investigated in the octopus using a brain slice preparation of the vertical lobe, an area of the octopus brain involved in learning and memory. Field potential recordings revealed long-term potentiation (LTP) of glutamatergic synaptic field potentials similar to that in vertebrates. These findings suggest that convergent evolution has led ...

متن کامل

Unctional and comparative assessements of the octopus learning and memory system

1.Abstract 2. Why study complex nervous systems in invertebrates? 3. The vertical lobe of cephalopods and the insect mushroom body are unique brain structures involved in the advanced behavior of these animals 4. The morphological organization of the octopus nervous system 5. The learning and memory system of Octopus vulgaris 5.1. Morphological organization of the octopus VL-MSF syste 5.2. Elec...

متن کامل

Serotonin is a facilitatory neuromodulator of synaptic transmission and "reinforces" long-term potentiation induction in the vertical lobe of Octopus vulgaris.

The modern cephalopod mollusks (coleoids) are considered the most behaviorally advanced invertebrate, yet little is known about the neurophysiological basis of their behaviors. Previous work suggested that the vertical lobe (VL) of cephalopods is a crucial site for the learning and memory components of these behaviors. We are therefore studying the neurophysiology of the VL in Octopus vulgaris ...

متن کامل

P3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory

Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...

متن کامل

P26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory

Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2008